Monday, 8 June 1998

1998 IMS Workshop WMG:

Cryogenics: A New Beginning

Setting Up and Calibration of a Cryogenic Test Station

J. M. Pond

Code 6851, Naval Research Laboratory Washington, DC 20375

pond@chrisco.nrl.navy.mil

Outline:

- Introduction
- Overview of a system
- The cryogenic refrigerator
- The vacuum chamber
- Providing a vacuum to insulate the experiment
- Temperature monitoring and control
- Getting an isothermal environment
- Getting microwave signal in and out
- Calibration issues
- Some references and conclusions

Motivation:

- Provide some useful information to rf and microwave engineers who:
 - have little or no experience with cryogenics
 - have little or no experience with vacuum equipment
 - wish to save themselves some grief by finding out from someone who has been greatly grieved what does and doesn't work
- Initiate and stimulate discussion of techniques for improving cryogenic microwave measurements and testing methods
- Firm belief that, even if HTS hasn't "lived up" to the popular hype, cryogenic electronics is a near term reality:
 - colder is better higher conductivity, higher mobility, less noise
 - cryocooler and packaging technology is becoming affordable

Disclaimers:

 Where possible information about vendors and suppliers has been provided. In no case should this be presumed to be an exhaustive list nor a recommendation or endorsement

System Options:

- Closed-cycle refrigerator
 - Vibration can be a problem microphonics
 - Self contained no transfer of cryogenic fluids no cryogenic infrastructure required
 - Reliable based on cryopumps found in vacuum systems
 - Not cheap
 - Ensuring an isothermal environment is more difficult
- Open cycle need cryogenic fluid (liquid Nitrogen or Helium most common)
 - Nitrogen is cheap and easy to handle but can't get much below
 77K
 - Good if you can immerse in LN and are happy with one temperature and can stand condensation on device
 - Liquid Helium requires much more expertise in handling can get below 4K but is more expensive
 - With either, if you want temperature control over wide range you approach complexity of closed cycle system

Components of a Closed Cycle System:

- Refrigerator
 - Compressor where heat is expelled air or water cooled
 - Expander the gas expands and cools the "cold finger"
 - Gas lines often the expander and compressor are separate units with two Helium gas lines connecting them (He plays the role that Freon plays in your household refrigerator)
- Vacuum system vacuum provides the insulation that allows the DUT to be cooled
 - Pump various options from roughing pumps to turbo pumps
 - Gauge allows monitoring of chamber pressure
- Temperature regulation refrigerator runs unregulated heaters provide ability to adjust temperature
 - Heaters resistors
 - Sensors (thermometers) many options
 - Controller feedback loop between heater and sensor
- Vacuum chamber provides thermal isolation of DUT
 - Feed throughs electrical, mechanical, optical

The Chamber, Microwave Feedthrough and Temperature Controller

The Basic Subsystems of a General Purpose Cryogenic Microwave Test System

Some of the Basic Components

Basic Vacuum Chamber

Viewport/Optical

Sliding Coax Feedthrough

Laboratory Closed-cycle Refrigerator:

- Assuming size, weight, and power consumption are of minimal importance in laboratory setting, need to estimate:
 - Minimum operating temperature
 - Maximum heat load at that temperature
 - generated within the DUT/sample
 - due to thermal radiation and thermal conduction
- Many closed-cycle systems for laboratory use have been developed from the cryopump industry:
 - Usually Gifford-McMahon cycle
 - Typical cooling capacities: 10-50 Watts @ 77K and 5-15 Watts
 @ 20K
- Some vendors:
 - APD Cryogenics (www.apdcryogenics.com)
 - CTI-Cryogenics (www.ctivacuum.com/enhanced/index.htm)
 - CVI (www.chart-ind.com/cvi/crs/)
 - Leybold Cryogenics (www.leyboldcryogenics.com)

Vacuum Chamber:

- Rely on standard commercial parts as much as possible
 - Stainless steel components readily available
 - stainless is the standard for UHV minimal outgassing
 - stainless is heavy
 - wide range of standard component (building blocks) available to minimize custom work
 - Custom stainless steel vacuum equipment is expensive
 - welding to UHV standards is not trivial
 - brass, aluminum, lucite, etc. are fine for custom/home made parts
- Some vendors:
 - MDC Vacuum Products Corp. (www.mdc-vacuum.com)
 - Nor-Cal Products (www.snowcrest.net/norcal/index.html)

Close-up of the Chamber, Cold Stage and Si Diode Sensor

Top View of Cryogenic Chamber

Vacuum Chamber — Feedthroughs:

- The ports and feedthroughs are as important as the chamber itself
 - Flexibility
 - have plenty of standard ports using one (maybe 2) flanges
 - brass, aluminum, etc. are fine for custom parts
 - Customizable
 - standard flanges always have blank-off plates available
 - an excellent starting point for custom feedthroughs
 - Expandability you always need more feedthroughs
 - do not risk integrity of the basic chamber
 - your needs will grow and it is best to be able to keep the basic system geometry intact
- Types of feedthroughs (besides the obvious: coax cable and bias)
 - Mechanical
 - tuning screws on DUT, etc.
 - Optical
 - visual inspection troubleshooting show and tell
 - optical response
 - Radome

Close-up of 6-port Sliding Coax Feedthrough

Simple Mechanical Feedthrough for Tuning DUT

A Plexiglass Desiccator Cover for a Radome or for Visual and Mechanical Access

Vacuum Considerations:

- With decent cooling capacity a rough pump down to ~100 milliTorr is sufficient. The refrigerator will then act as its own cryopump.
- Since the refrigerator is a better vacuum pump than a roughing pump, "backstreaming" of oil into the chamber can be a problem
 - oil can coat the chamber, DUT and cabling a mess at best
 - solutions:
 - valve off roughing pump automate by using a pressure gauge/controller (www.granville.com/275cam.htm, www.mdc-vacuum.com)
 - use turbo pump to evacuate chamber
- With a good roughing pump and large refrigerator, virtual leaks, outgassing and very small leaks are usually not a problem.
- Vent with Nitrogen to eliminate condensation on cold stage/DUT
- Some vacuum pump/system vendors:
 - Alcatel Balzers Edwards Leybold Sargent Welch Varian
 - Precision Shimadzu Seiko Seiki Kinney Stokes CTI

Temperature Control

- Most systems use a refrigerator running at full capacity and use resistive heaters in conjunction with thermometers and a controller to provide an isothermal testing environment.
- Standard practice is to use two thermometers
 - Temperature control mounted close to the heater
 - Sample temperature mounted on or as near as possible to the DUT/sample
 - \Delta T of thermometers is a good measure of thermal design
- To provide good control at all temperature:
 - Heater power > cooling power at all temperatures
 - Ohmite "Metal-Mite" aluminum housed axial lead wirewound resistors are a very robust heater (E.J. Cukauskas)
 - "PID" controller provides best performance
 - Autotuning features can be useful
- Cryogenic Temperature Controller manufacturers include
 - Lakeshore Cryotronics (www.lakeshore.com/)
 - Scientific Instruments, Inc. (www.sci-inst.com/)

Thermometers/Sensors:

- Types:
 - Diode fast response, interchangeable, standard calibration
 - Resistor larger, mounting strain induced errors, many types with both PTC and NTC
 - Capacitor drift problems and thermal cycling problems, immune to magnetic fields
 - Thermocouple errors due to temperature gradient of wire
- Characteristics excellent product and Application Notes are available from vendors — make sure your choice meets your needs:
 - Magnetic field sensitivity
 - Size and Mass
 - Reproducibility and Stability
 - Accuracy/sensitivity/resolution
 - Interchangeability
 - Response time
- Recommendation:
 Unless **H** fields are part of your experiment use 4-wire Si diode

The Heater Resistors and Control Sensors

(This is the underside and mounts directly on the cold finger)

Ensuring Good Thermal Contact:

- Minimize number of interfaces that heat must cross.
- Utilize materials such as Oxygen Free High Conductivity (OFHC) copper in as much of the cold finger and DUT mounting platform as possible.
 - not easy to machine
 - particularly important for working much below 77K
 - www.copperandbrass.com
- In all cases it is preferable to directly mount (screws) or clamp the DUT/ sample to the cold stage rather than rely on gravity.
- Once the chamber is under vacuum, thermal contact of DUT/sample to cold stage must be ensured. Options include:
 - Thermal grease Apeizon Type N or equivalent messy
 - Rubber cement particularly good for small sample where concern about use of solvents exists
 - Indium foil more difficult to use may "stick" to sample and be destroyed in removing — expensive
 - Au foil/indium foil even more expensive Au is inert

Thermal Behavior of Cryogenic Microwave Test Facility Temperature Versus Time and Cooling/Heating Rates

RF Feedthroughs:

- Balance the issues of attenuation versus heat leak.
- Heat leak not only loads the cooling capacity of the cooler it also is dumping heat directly into the region of the DUT/sample that is being measured leading to higher temperature uncertainty.
- In many laboratory cases, trading off attenuation for better thermal conditions is preferable the real world is much more challenging.
- Stainless steel coax is popular option compared to Cu

Cable Type	Thermal load (W•cm)	Insertion Loss (dB/cm)
0.085 Cu	14.97	0.022
0.141 SS	1.77	0.028
0.085 SS	0.90	0.048

Coaxial Cable and Connector Considerations:

- Teflon has high coefficient of thermal expansion
 - gaps can occur at low temperatures
 - if possible use coax with special dielectric with low coefficient of thermal expansion (ISOCORE by Rogers is no longer made)
- Hysteresis in teflon creep can lead to problems:
 - Center conductor contact problems "captured center pin" connectors may be required especially for long straight cables.
 - Measurement repeatability and, hence, calibration problems
- Any of the standard coax connector series (SMA, K, OS-50) can be used — individual connectors within a series may be suboptimal
- Stainless cables require stainless compatible solders and fluxes.
 Suggested solutions:
 - Eutector Flux 157 and EutecRod 157 (Eutectic Corporation, 40-40 172nd St., Flushing, New York 11358)
 - Indium Corporation of America (www.solder.com/index.html)

Cold Stage with DUT Mounted Background is 10 Layer MLI

Measurement and Calibration Issues:

- Everything has some amount of temperature dependence measurement calibration is an issue
 - If nothing else, the physical length changes
 - IL of coax decreases electrical length decreases
- Room temperature calibration
 - reduced accuracy
 - easy same as always
 - some first order correction for IL can be made in some cases
- Cryogenic calibration
 - Standards, particularly loads, have temperature dependence themselves — TRL preferable
 - Tedious unless a matched network using switches is used, a cryogenic cycle is needed for each standard
 - Instrument drift may be an issue
- Cryogenic calibration
 - Standards, particularly loads, have temperature dependence themselves — TRL preferable

Measurement Error at Various Temperatures Illustrated by Measurement of an SMA F-F Bulkhead Adapter After Room Temperature Calibration

(using HP 85052D (SOL) 3.5mm economy cal kit)

Measurement Error at Various Temperatures Illustrated by Measurement of an SMA F-F Bulkhead Adapter After Room Temperature Calibration

(using HP 85052D (SOL) 3.5mm economy cal kit)

Measurement and Calibration Issues (cont.):

- The previous example was a worst case in many ways:
 - The cable length subject to a thermal gradient was at a maximum (~20 cm)
 - IL can be reduced by ~2X by using 0.141
 - Use shorter cables 5 cm of 0.141 cable would have a 0.5 Watt thermal load but would reduce IL by ~4X
 - phase error would, similarly, be reduced by ~4X
 - Based on measurements shown in previous graphs, these modifications should result in IL error <~0.1 dB and phase error <~0.5 degrees
- Possible complications:
 - Thermal design of DUT/sample becomes more of an issue since more heat is entering the DUT coaxial connectors.
 - minimize layers and interfaces in DUT package
 - place sample temperature sensor near coax connector
 - more sample temperature sensors to monitor ΔT of DUT
 - May need to customize coax feedthroughs to optimize this performance for each DUT

Measurement and Calibration Issues (cont.):

- Noise measurements can be particularly tricky to the unwary
 - Standard Noise Figure Meters:
 - assume that both ports of the DUT are available
 - are scalar instruments hence have problems with electrically long low-loss devices
 - cryogenic feedthroughs represent just such a problem additionally their electrical length and loss are temperature dependent
 - will happily report negative Noise Figures
 - Proceed carefully from first principles
 - even by deembedding from the cascade doesn't really solve the problem due to reflections
 - an isolator can help with the reflection problems and make deembedding more accurate in some cases
 - Listen carefully to the two talks in this Workshop on this important topic
 - low Noise Figure is one of the primary reasons cryogenic operation is so promising
 - it is the measurement area where standard commercial RT techniques are least applicable

Some Suggested References:

- Cryogenic Engineering, R.B. Scott, D. Van Nostrand Co. Inc., Princeton, New Jersey, 1959
- Experimental Techniques in Low-Temperature Physics, Third Edition, G.B. White, Oxford Science Publications, Clarendon Press, Oxford, 1979
- Cryogenic Process Engineering, K.D. Timmerhaus and T.M. Flynn, Plenum Press, New York, 1989
- Temperature Measurement and Control Catalog, Lakeshore Cryotronics, Inc., Westerville, Ohio
- Web sites:

www.omega.com/techref/itemp.html — The International Temperature Scale of 1990 (ITS-90)

Conclusions:

- Performance advantage of cryogenic operation is obvious.
- Cryocoolers for product are increasing in reliability and decreasing in price — particularly if LN temperatures are not needed.
- Cryocoolers for laboratory use are very rugged and reliable.
- Assembling a laboratory system is basically an exercise in assembling off-the-shelf hardware from different fields.
- Custom hardware can be minimized
- Measurement and calibration of a cryogenic system at microwave frequencies, although more difficult than at room temperature, involves basic trade-offs of speed versus accuracy — analogous to issues that affect room temperature measurements as well — just not as familiar to the microwave engineer and there is not, as yet, a solution offered by the major microwave test and measurement industry.